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Preface

This thesis is a preliminary design study of a toroidal electro-

static analyzer with multiple, off-center slits. The use of off-center

slits provides one with multiple data channels, with each channel

sampling at a different energy. Thus, energy spectra can be obtained

in a fraction of the time normally required by an analyzer with a

single entrance-exit slit pair.

I would like to thank my thesis advisor, Major James Lange, for

his encouragement and frequent help which was so essential for the

completion of my thesis. I am also grateful to 1Lt John Glessner and

1Lt Glenn Param, whose conversations were of frequent aid.

Finally, I wish to give my special thanks to my wife, Carol, for

her patience and assistance throughout my thesis. If not for her

loving support, this paper might never have reached its completion.

Robert LaVerne Hartley, Jr.
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Abstract

The design of a toroidal, electrostatic analyzer is discussed

with special emphasis on the instrument providing multiple channels

.2 of data by sampling different points of the energy spectra

simultaneously. Two additional results of this study are that a

toroidal analyzer can have four times the resolution of a spherical

analyzer and can cover sixteen times as much of the energy spectra

(with a fixed electrode voltage).

The electrostatics, equations of motion, and the optic equations

are discussed. The applications chapter discusses the use of multiple,

off-center slits, the minimization of the size of the instrument, the

trade-offs that must be made in designing an instrument, the effect of

field error., the minimization of the effects of the field errors,

and the total beam current as seen by the detector. Included in the

Appendix are design curves that should be of assistance to the reader

in designing his own instrument.
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A

I. Introduction

N A. Background

Electrostatic analyzers are used to measure the charge to energy

-7. ratio of ions. Their function can perhaps best be explained with a

simple example. Let an ion of mass, M, and charge, q, enter a pair ofp' 1 2
parallel plates (see Figure 1) with energy, To - MV . We will

assume that the electric field is purely in the y-direction and that

the initial conditions are x(o) z 0, i(o) = VX, y(o) = 0, §(o) 0.

The equation of motion is given by

M= qEy (1-1)

with solution

y(t) t2  (1-2)"" ffi 2M

The ion travels through the electrodes in a time, tj = L/Vx . We may

now write equation (1-2) as

Equation (1-3) shows us that the ion's position, as it exits the

electrodes, is a direct measure of the ion's charge to energy ratio.

Traditionally, an electrostatic analyzer has fixed entrance and

exit slits attached to it. Only those ions with a specific charge to

energy ratio will be transmitted. A detector behind the exit slit

L: provides a count of the number of ions with this specific charge to

!1
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energy ratio. By varying the voltage applied to the electrodes, a

complete q/To spectra can be obtained. Furthermore, if q is known,

S-then the energy spectra can be measured directly. In this paper the

charge will be folded into the centripetal force and will not show

*. explicitly as q/To. The energy will be given by itself without

reference to the charge.

The four most common types of electrostatic analyzers have

parallel plate electrodes, concentric cylindrical electrodes,

concentric spherical electrodes, and toroidal electrodes. The

toroidal electrode surfaces are described by two distinct radii,

r and R, with different centers (see Figure 2). The toroidal elec-

trodes are more general in that they contain the cylindrical

electrodes, R - , and the spherical electrodes, R = r, as special

cases.

The parallel plate analyzer is restricted in its resolution due to

the limited angle through which it can deflect the beam. The

cylindrical, spherical, and toroidal analyzers all have better

resolution than the parallel plate analyzer. Because of their

rotational symaetry, they can deflect the ion beam through a larger

angle, thus achieving better energy dispersion. However, the

cylindrical analyzer has no axial focusing, thus the beam spreads out

axially, which lowers the beam intensity. Due to their double curva-

ture, both the spherical and toroidal analyzers have axial focusing,

which helps to maintain the beam intensity. Since the cylindrical and

spherical analyzers are both special cases of the toroidal analyzer,

only the toroidal analyzer will be developed in this paper. When

I3
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appropriate, cylindrical and spherical analyzer formulas will be

provided by taking the proper limits of the toroidal analyzer formulas.

Electrostatic analyzers generally have high resolution and high

transmission curves, but they are limited to an energy range of about

10 ev to 100 key. The lower energy limit occurs when the electrode

fields are reduced to about the same magnitude as the self-fields of

the ion beam. The upper energy limit is due to voltage breakdown

across the electrodes.

Electrostatic analyzers are much lighter and have simpler power

requirements than do analyzers which use magnets. They are thus

well-suited for space applications, such as solar wind experiments.

They are also useful in plasma experiments in the laboratory.

B. Problem

Generally, the electrostatic analyzer provides only a single data

channel. In certain applications, as in pulsed plasma experiments,

there is only a very limited, total observation time. This makes it

difficult to gather sufficient data in a single experiment. It is

hoped that by extending the cross radius R through a full 2n

revolution, that is the radius that sweeps perpendicular to the main

ion path (see Figure 2), that an instrument can be designed that

provides multiple data channels, each channel sampling a different

energy.

C. Coordinate System

The coordinate system that will be employed is the cylindrical

coordinate system r, *, z shown in Figures 2 and 3. The radial radii

of the electrodes are r and rb  The cross or axial radii of the

6
w.a
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electrodes are R and Rb. It will be assumed that R and Rb have a..:a D a D

common center of curvature. The angular extent of the electrodes in

the Z = constant plane is e = e The angular extent of the electrodes

in the * - constant plane is 0, where 0 will be allowed to sweep

through a full 2w.

. The mid-electrode surface, halfway between the two electrodes, is

described by the radii r = a and R a R , as shown in Figure 3. The
e e

central path through the electrodes is given by r = a and z = 0. It

will be assumed that the ions enter the electrodes near this central

path with small entry angles such that the ions always remain in the

close vicinity of the central path.

In most places in this paper, the dimensionless coordinates p and

. will be used where p and are defined by

(r - ae)

- a (1-5)
e

The assumptions in the previous paragraph require that p and € be

much less than one at all times.

D. Approach

The electrostatic equations will be obtained from the literature

and modified for use in this paper. Equations of motion will be set

up and solved, thus describing the trajectory of an ion through the

electrodes. The solutions to the equations of motion will then be

, o%" manipulated so as to produce optic equations, which provide a more

convenient description of the ion behavior. The resolution and

7
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transmission will also be developed at that time. Applications of the

optic equations will then be discussed with special attention paid to

the behavior of off-center slits. It is the use of off-center slits

that permits the analyzer to sample the energy spectra at various

points simultaneously, thus providing multiple channels of data.

The trade-offs that are required in designing an actual instrument

will then be discussed, with an accent on minimizing the size of the

instrument. Design curves involving the various system parameters are

presented in the Appendix to assist the reader in designing an

instrument suitable to his particular needs.

The effects of errors in the series solutions to the electric

fields are discussed with respect to how they impact on the resolution

and transmission. The effects of these errors can be minimized with

the use of secondary entrance slits which restrict the entrance angles.

Finally, a qualitative discussion is given on the statistical

problem of ion flux through the various slits and the electrodes as it

relates to the total ion current seen by the detector.

8



II. Electrostatics

A. Overview

The equations for the radial and axial electric fields, the

electrostatic potential, and the equipotential surfaces are listed,

as derived by N. Svartholm (Ref 1:196-197). The variables and

constants involved are defined and derived. The connection between

the voltage, ±U0 , on the electrodes and the central path electric

field strength, E0, is derived. Finally, approximations are made to

arrive at the final form of these equations that will be used in

subsequent chapters.

B. Electrostatic Equations

As mentioned in the Introduction, the electric field strength

S," equations were obtained from the literature. We will assume that the

electric field and the electric potential are both zero outside of the
':1

electrodes. Fringing fields will be neglected in this treatment. It

-will further be assumed that the electrodes are charged to ±U0 and

that the zero equipotential surface is midway between the two

electrodes, for small electrode gaps. The electric field is assumed

to possess cylindrical symmetry with respect to the z-axis and mirror

symmetry with respect to the z = 0 plane. If the electric field is

given in the z = 0 plane near r - a by the series expansion
e

E(p) = EO[IIP + 32PP2 + • .1 (2-1)

9.1o .'



where e~(22

a
e

then according to N. Svartholm (Ref 1:196), the electric potential and

the electric field strength in an annulus surrounding r =ae is

given by

U =,; -EOaeIP + 'alp' + 12P' + 183P'

+ BO)C + 1(l - 01 - 2a2)4

~~2 2
BI8 + 82 + 383)0

+ .1(1 a, +~ 4a2 + 6a34] (2-3)

E rE(p,;) - Ea[l + alp + 82P + 03P

+ 1( , + B2 + 303 )p2; + 1(l -L + 482 + 6B3)43]

(2-4)

E z(p,;) - Eo[-(l + 804 + (I - al - 262)P4

-(1 al + 132 +383)P 2

+ Bi - 012 + 000)41 (2-5)

z
where ~ ~(2-6)

e

The potential has been set up for U -0, when r a aep z -0.

When the potential is set to

-- U(p,;) --E~a a (2-7)

10



where a is a constant, then the equipotential surface with this

particular potential value is given by (Ref 1:197) as

" 1- - 18O2 (+ ( 2 - 102)o + [l BI - (1 + 82 - 282)o]42

(2-8)

The constants 01 and 82 are given by H. Ewald and H. Liebl

(Ref 2:873) as

-(1 + ) (2-9)

B2 1 + a e + a 2(1 + R ')/2R 2  (2-10)Re  ee e

where R dR (2-11)
e dr Ir a

i rfae

z-O

In our case, we have

R -R + Cr -a )(2-12)

therefore, R '= 1 (2-13)

This gives us

02=1 + ae + ae (2-14)Re R

It appears that Ewald's values for a, and 82 were arrived at by

one of his associates, R. Albrecht (Ref:3), who used a general, but

difficult, conformal mapping approach involving figures of revolution.

A simpler approach was suggested by H. Wollnik (Ref 4:165-167), for

the special case when R and Rb are concentric, as is the case here.

By symmetry, one can assume that the equipotential surfaces have the

same shape as the electrodes. Conservation of electric flux can be

used to relate the electric field, ED, for r = ae, to the electric

Iie



* field, E, for r a . This gives us, see figure 2,

e

E(rdo) (RdO) - Eo(ae d) (R edO) (2-15)

where r = a (1 + p) (2-16)
e

R R + (r -a ) (2-17)

Therefore,

qonE =EO (2-18)

or

E - Eo [R (2-19)E1-Z0L l T- o) -a

Equation (2-18) can be written, to second order in p, as

E EO I - + P 2) ! e, + ae 2 P2)] (2-20)

or

This gives us immediately

- + Re (2-9)

a2 + L epL (2-14)

These values for B and 82 are consistent with those given by

Ewald. It should be noted equations (2-3), (2-4), and (2-5) apply to

either a cylindrical, spherical, or toroidal system. It is the choice

of ae and Re that determines to which system the equations apply.

For the cylindrical system Re a ,, for the spherical system Re =a

12



and for the toroidal system most any choice of Re and ae is

permissible.

C. Electrode Voltage

The voltage, U0 , that is applied plus/minus to the electrodes, is

related to the central path electric field strength, E0, by

Ub - Ua = -fj 0 dt (2-22)
ra

With Ub = +U0, Ua = -U0 , and integrating along a radial path in the

C - 0 plane, we get

2Uo -p aedp (2-23)

Pa
By using equation (2-19) for the electric field, and setting

.; a =-b we arrive at

aaV* E0  I2U O[l~Ab ( (2-24)

-1) 1( e - b) (1 +Pb)JI
(Re Re

The electrodes are separated by a distance d, defined by

= d (2-25)

Pb 2ae

Eo, the central path electric field strength,is thus determined

by equation (2-24) in terms uf the electrode geometry and the applied

voltage. To apply it to the spherical case, it is necessary to take

the limit as Re approaches ae, and to apply L'Hospital's rule.

D. Simplified Electric Field Equations

For the purposes of this thesis, we will need U(p,C) only to

second order in p or , and we will need Er(PC) and Ez(p, ) only to

13
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first order in p or C. Applying these constraints to equations (2-3),

(2-4), (2-5) leaves us with

U(p,) - - (i+ el) (2-26)

E (p) - Eo[l + alp] (2-27)r

E (r,) - E0[-(l + al)C] (2-28)z

It is these three equations that will be used in the mechanics

chapter in the equations of motion.

."
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III. Mechanics

3A. Overview

The pattern of development of chapter III closely follows that

used by H. E. Duckworth and S. N. Ghoshal (Ref 5:210-221), who will

not be further cited. Certain notational changes are made to improve

the similarity in form between the radial and axial equations and to

generalize the radial solution. The most important change from

Duckworth's notation is the transformation of the radial solution to

explicitly include the ion energy.

The primary goal of the mechanics chapter is to arrive at solutions

7 for the zadial and axial motion of the ions inside of the electrodes.

The equations of motion are the standard, cylindrical equations of

motion.

By invoking conservation of energy, the centripetal force equation

and the electrostatic potential, the velocity change as the ion

penetrates the field boundary is derived. This result is coupled with

conservation of angular momentum to get a solution for the angular

equation of motion.

By combining the solution to the angular equation of motion,

centripetal force equation, and the radial electrostatic field, the

radial equation of motion can be solved. It is in this section that a

connection is made between certain math constants in the radial

equation and the energy of the ions, relative to the mean energy, To,

to which the system is tuned.
6
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By combining the solution to the angular equation, the centripetal

force equation, and the axial electric field, the axial equation of

motion can be solved, thus completing the mechanics chapter.

B. Equations of Motion

The equations of motion are

Mr - Mr$ = eEr (3-1)

dtM - (r25)= eE p 0 (32

Mz = eEz  (3-3)

0-19
The change of the ion is e = +1.609 x 10 coulomb, and the ion mass,

M, is defined to be

M = M0(l+Y) (3-4)

where Y is assumed to be a small number. M0 will be defined shortly-by

the centripetal force equation.

C. Velocity Change at Field Boundary

For an ion of mass, M, and a velocity

v' = vo(l+a) (3-5)

outside the electric field, with 8 assumed to be a small number, the

velocity, v, of the ion just after it enters the field is given by the

energy balance equation,

M(V 2 )= Mv + eU (3-6)
2 2

16



This can be rearranged as

v = (v')2 -2EU(3)

-7 E -- (-7)

For an ion of mass M0 and velocity v0 undergoing pure angular

motion in the field along p - o and z 0 0, the centripetal force

equation is

c v 2 Fe e eEO (3-8)
ae

This gives

eEoae - -MoVo 2  (3-9)

By combining equations (2-9), (2-26), (3-4), (3-5), (3-7), (3-9),

rearranging, and expanding to second order in p, 4, , or Y, we arrive

Iat

V =V +-+i( (p242)+p(t+Y)] (3-10)

This is the velocity, v, of an ion in the field that started with a

velocity, v' - v0(l+0), outside of the field. Equation (3-10) will also

be needed to first order:

v = v0(l+-P) (3-11)

D. Angular Equation of Motion

The ion velocity component along the central path is the angular

velocity, vo, which is given by

vo - vc,. ( (3-12)

17
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where a, is the angle between the ion path and the central path. v is

the ion velocity inside the field after it enters at the point (pl,cl).

Since the entrance angles were assumed to be small, we can use the

approximation, cos(o.) f 1 - • By combining this with the

* equations for v, (3-10), and for vo, (3-12), expanding and retaining

only second order terms in a, Y, Pi, and 41, we have

vl p ) (p2 2)+P( +Y l (3-13)

We can also write

V (3-14r- ae(l+pl) (3-14)

We thus have

$1 1e L +-2p,-2O p l+ Ypl+ 2p 2+  ae (p1 I)_ 0121 (3-15)

The second equation of motion gives us conservation of angular

momentum, from which we can write

r =2 r 1 2$ (3-16)

By substituting the equation for $1, (3-15), into equation (3-16) and

solving for $ to second order in g, Y, p, Pi, Ci, and a,, we arrive at

v . 1+- 20 2 pa+302 _P 3 24 (±e) (2 2 2)1 (3-17)
ae 2 2~p+1 - 2 Re) ''

This equation describes the angular motion of an ion, but it is

nonlinear and coupled. The $ equation was derived to second order only

to keep from losing first order terms. To first order, the ;equationis

" Xa (1+a-2p) (3-18)

ae
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This equation for * will be used in the radial equation of motion.
It will also be useful to drop the $ equation to zeroth order and

integrate with respect to time.

.rot (3-19)

This equation will be useful later in eliminating (t), from the radial

and axial solutions, in favor of ($).

E. Radial Equation of Motion

As r - ae(l+P), we have - ae; therefore, the radial equation of

motion (3-1) can be transformed to

Maep _ Mae(l+P) ($)2 = eEP (3-20)

By combining the equations for a, (2-9), Ep (2-27), M (3-4), the

(5 !centripetal force (3-9), and * (3-18), with the radial equation (3-20),

we arrive, to first order in B, Y, and p, at

0i (IL)2 [(Y+28) - p(-!e_ (3-21)~ae Le

By defining the following three new constants

S2 .e (3-22)

Re

2 a 2 - C2 (3-23)

i- "Y + U1

=----2 (3-24)

we can transform the radial equation of motion to its final form

shown below

2 2
,., X 2 L)6 (3-25)
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The particular solution is obviously pp - 6. The homogeneous

"'' solution depends on the value of X2 . For = 0

Ph(t) - Ai*t + B1  (3-26)

We can eliminate (t) in favor of (0) with the aid of equation (3-19).

By defining A, A,* ae , we have
V 0

0= + B, (3-27)

Therefore,

p(o) = A10 + B, + 6 (3-28)

For X2 > 0, we have

-h(t) - A2cos(Xt) + B2 sin(X-2t) (3-29)

Therefore,

p(4) a A2cos(Xo) + B2sin(X ) + 6 (3-30)

For X2 <0, we have

p(o) - A3cosh(Xo) + B3 sinh(X ) + 6 (3-31)

Since X2 <0, X is purely imaginary. We can then define X* as follows,

with I =

iX - - X (3-32)

By defining B3 
= iB3*, the third solution becomes

p(o) - A3cos(X*O) + B3sin(X*) + 6 (3-33)

20
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*-By redefining X 2 to be

X2  j - C21 (3-34)

then X* = X, and the third solution becomes identical in form to the

second solution.

The boundary conditions are declared to be

P(O) =, (3-35)

,d-.''d.. - "-r (3-36)

where "r' will be defined later in the optics chapter as the radial

entry angle. Applying these conditions gives us

X2  0 p(O) = -r' + (3-37)

X2  0 p(o) - (p-6)cos(XO)-' sin(X4) + 6 (3-28)

x

In the limit as X2 -0, the solution for X2 $ 0 reduces to the

X2 - 0 solution. It is thus seen that the trig solution (3-38)

contains both the linear solution and the hyperbolic solution.

The parameter 6 can be related to the kinetic energy of the ion.

We can define T to be the energy of an ion outside the field with

mass M and velocity v', and To to be the kinetic energy of an ion of

mass MO and velocity v0 . Therefore, we have

T - M(v,)2 Mo(1+Y)vo2(l+)2

- To(I+Y) (l+6)2 (3-39)
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To first order in B and Y, we have

T - To(l + 28 + Y)

.4

By applying the definition for 6 (3-24), we have

T - To(l + X26) (3-40)

Solving for 6 gives us

6 1(T T) (3-41)

By defining the relative energy, n, as

.T - To (3-42)
- To

we have

It should be noted that T is the unperturbed kinetic energy of an

ion outside of the electrostatic field, whereas To is the kinetic

energy of an ion inside the field. Specifically, To is the kinetic

energy to which the analyzer is tuned. It is this energy that will

permit an ion to track the central path through the electrodes.

By substituting this expression for 6 (3-42) into equation (3-38),

we arrive at the final form of the radial solution:

p i - cos(X - Lsin(X) +4 (3-44)

This form of the radial solution is in terms of the relative ion

energy, the point of entry, the entry angle, and the electrode

geometry.

22
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F. Axial Equation of Motion

As z - a e, we have z - ae; therefore, the axial equation of

motion (3-3) can be transformed to

.ae- , eE (3-45)

By combining the equations for 8 (2-9), E; (2-28), M (3-4), and

the centripetal force (3-9), with the axial equation (3-44), we

arrive, to first order in 8, Y, and , at

+ae~ -=0 (3-46)

The standard solution to this equation is

C(t) - Acos/cVl)e Bsin (3-47)

By invoking the equatior for 0 (3-19), we have

S(() - Acos(c0) + Bsin(co) (3-48)

The boundary conditions are declared to be

C(O) =C (3-49)

d-I =-' (3-50)
d O zd 0=0 z

where =z' will be defined later in the optics chapter as the axial

entry angle. Applying these conditions, we arrive at

C() Cjcos(co) - tLsin(cO) (3-51)

This form of the axial solution is in terms of the point of entry,

the entry angle, and the electrode geometry. It differs in form from

the radial solution only in that the relative energy does not appear
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* "in the axial solution. This difference is principally connected to

the fact that the axial electric field is much smaller than the

radial electric field.

G. Summary of Key Mechanics Equations

For the convenience of the reader, certain key mechanics

equations which will be needed in the optics chapter are listed here

for future reference.

2  -(3-22)
Re

- 2X2 -21,.',. 12 - (3- 34 )

T-To (3-42)
To

P(O) PI cos(X$) -m sin(X ) (3-44)

.(0) = rccos(eo) - M sin(c$) (3-51)
2

p24



IV. Optics

A. Overview

The pattern of development of chapter IV closely follows that used

by H. E. Duckvorth and S. N. Ghoshal (Ref 5:210-221), who will not be

further cited. Many of the toroidal equations presented in this

chapter were developed in analogy to the cylindrical equations

produced by Duckworth and Ghoshal. Certain notational changes,

consistent with chapter III, are made to improve the similarity in

form between the radial and axial equations and to permit the equations

to explicitly contain the relative ion energy.

In this chapter, coordinate systems are established in the regions

outside the entrance and exit to the electrodes. The behavior of the

ions in these regions is worked out and refraction at the field

boundary is considered.

By combining the behavior of the ions outside the electrodes with

the solutions to the radial and axial equations of motion inside the

electrodes, the locations of the radial and axial image planes are

determined.

Further manipulation of the equations which specify the locations

of the image planes yields the location of the radial and axial focal

points, the radial and axial "focal lengths," and the radial and axial

Newtonian lens equations. It must be remembered that, while these

equations are patterned after the thin optical lens equations, the

electrostatic analyzer is not a thin optical lens and thus,some of the
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results in the applications chapter (chapter V) are different from

" - what one might first expect.

By comparing post-electrode ion locations with pre-electrode

starting points, the radial and axial image magnifications, the energy

dispersion, the resolution, and the transmission are calculated.

B. Entrance Coordinate System

The space outside of the electrodes is assumed to be field-free,

thus the ion trajectories are straight lines. Cartesian coordinate

systems are therefore a natural choice for describing the motion of

the ions as they approach or leave the electrodes.

~Figure 4 - Entrance/Exit Coordinate Systems

[ At the entrance, = 0, the coordinates are x', y't ,'wt h

~origin located at p = 0, = 0, c$ = 0 (see Figure 4). The positive

"" '* x'-direction points away from the electrodes; thus, at the origin
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dx' a -aed O . The positive y'-direction matches the positive r or

' p-direction; thus, at the field boundary dy' = dr = aedp. The positive

z'-direction matches the positive z or C-direction; thus, at the field

boundary dz' - dz = aedC.

The angle =; is defined to be the angle between the x'-axis and

the projection of the ion path onto the x'y'-plane (see Figure 4). It

Sshould be noted that fr > 0, evaluated at the field boundary, then

P is decreasing. This is because the ion is moving in the (-x')

direction.

The angle =z is defined to be the angle between the x'-axis and the

projection of tbe ion path onto the x'z'-plane (see Figure 4). It

should be noted that if (z > 0, evaluated at the field boundary, then

Sis decreasing. As in the radial case, this is because the ion is

moving in the (-x') direction.

The angles ar and c will both be assumed to be small angles.

This is required in order to be consistent with the earlier assumption

in the electrostatics chapter that the ion path must remain in the

close vicinity of the central path through the electrodes. With the

assumption of small angles, we can write

d= tan r (4-1)
d o 0=0 x'=0

-dC
0 dx ' 0r

This establishes the connect between ar and a with the boundary

conditions (3-36), (3-50) used in the mechanics chapter.
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Figure 5 - Entrance Angles

By the use of simple geometry, we can arrive at expressions for

r and in terms of the coordinates. Let us assume that the ion

originated from the off-axis point A' with the coordinates x' =

y' aep , z' = ae o (see Figure 5). Let us further assume that the

ion enters the field at a point with the coordinates x' 0, y' faeP,

z' ae . From the geometry, it is apparent that

tan x) 2e (po -1) (4-3)r
tan (2 z , (C0 -1) (4-4)

Equations (4-3) and (4-4) will permit the eventual elimination of

a and cz' in favor of the coordinates of the ion source and the
r z

coordinates of the ion's point of entry into the electric field.

C. Exit Coordinate System

The exit coordinate system x", y", z" has its origin located at

00, C = 0, f 4 e (see Figure 4). The positive x"-direction points

away from the electrodes, but this time it is in the direction of the

ion motion; thus, at the origin dx" = +aed. The positive y" and
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z"-directions match up with the positive p and C-directions

respectively; thus, at the field boundary dy" = aedp and dz" = aedC.

The angle a" is defined to be the angle between the x"-axis and
r

the projection of the ion path onto the x"y"-plane. As the ion is now

moving in the direction of increasing x", the angle r > 0 corresponds

to increasing p.
The angle " is defined to be the angle between the x"-axis and the

Z*

projection of the ion path onto the x"z"-plane. We now have (similar

to the radial case) " > 0 corresponding to increasing C.
z

I!t

We will assume that c and -" are small angles. This is consistent
r z

with the assumption that a and a are small angles and with timeSr z

reversal symmetry. With the assumption of small angles, we can write

d = = tan(r) - (4-5)
d$ OIo dx" I1= r

P = tan )(4-6)
o 0=0 x z zIe

By using the equations for p (3-44) and for C (3-51), we can

evaluate the differentials in expressions for a and a asr z

" r do = - - sin(Xoe) - r coS(Xoe) (4-7)" r = dc# €i~e

SI( T)

a = d = -Clj sin(Coe) -Z cos(e) (4-8)z de ¢=d4e e

This gives us a and o in terms of the entry angles, the electrode".r z

Igeometry, and the coordinates of the ion's point of entry into the
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electric field. We will need = and shortly to compute the ion
r z

motion after it exits from the electrodes.

D. Refraction at Field Boundary

It would be apropos to investigate the effect of ion path bending

or refraction at the field boundary at this point before continuing.

boundary

o ~ Y "11d J ,d

the velocity component parallel to the boundary, V11, is essentially

unchanged. It is the velocity component perpendicular to the boundary,

VLthat is affected by the change in potential energy (Ref 5:173).

We thus have (see Figure 6) outside the boundary, sin (- ) =VIV-o

and inside the boundary, sin VI/ .Solving these two equations

for V11 and equating them gives us an electrostatic Snell.'s law:

10o sin (-0) = V i sin (-)(4-9)
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or for small angles

V Io 0 V Li £ (4-10)

We can equate V 10 to V' (3-5), 0 to r (4-3), and V Li to V (3-I)

with p p lf. We therefore have

- = w. (4-11)
r i

or

Vo(l + B) ., (p0 - PI) = Vo(l + - (4-12)
0i 1

Solving for . to first order in , po and pl,we have

0C ai (Po -PI)

M c (4-13)

By exact analogy, we also have in the axial case, a. = c , where1 Z

*. is now an axial angle instead of a radial angle. Thus to first1

order, we may ignore any ion refraction at the field boundary. This

is true at both the entrance or the exit.

Refraction could not be ignored in any study which was interested

in examining higher-order effects, such as image aberrations. To get

some feel for the effect of the higher order terms, we start again

with the electrostatic Snell's law (4-9). By assuming that the angles

* are small, we can replace the sine function in equation (4-9) with the

tangent function:

V tan (-o) = V i tan ( i) (4-14)
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Figure 7 -Refraction at Field Boundary

Wie can equate V to V (3-5), - to ccr (4-3), and V ., to V (3-10)

with p = pi, =0. By replacing tan (-:') and tan (Y. with the

r I.

formulas shown in Figure 7, we can solve for 2. 2. to get, to second

order in p I Pit

(•+ .i - .

i L +- 2

1+ B)(4-15)

In the rest of this paper, the refraction will be ignored, and

will be used to identify the x'-distance to the ion source. If we did

want to investigate the second order effects of refraction, we would

.*. "have to replace V with . , as calculated by equation (4-15). This

equation has been graphed in Figure 8 on the next page.
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Of greater interest is the effect of refraction on the image

location. By applying an equation that will be developed later, the

radial Newtonian lens equation (g = 0, Z t '), we get:.?:- r

= - Pi 2 (4-16)r i+ P, 0 + P,2 + P Oa

9." is the radial image location that will be derived later,
r

assuming no refraction. rt is the radial image location when refrac-

tion is considered. Figure 9, on the previous page, shows equation (4-16)

.7!: .graphed for several values of 8. The ion energy T is greater than/less

than To as B is greater than/less than zero.

Figure 9 shows that ions with an energy T < To tend to focus in a

shorter distance than those ions with T > To. Figure 9 also shows that

ions with an entry point such that p, > 0 are focused farther out than....

those ions with P, < 0. Just exactly where an ion ends up depends on

its particular values of T and pl. In general, as the ion energy

deviates from To and the entry point varies from P, 0; the ion image

changes to a new location. If the exit slit is located at , then the
r

refraction effects lead to a loss of ions. Along Pl = 0, the error in

the image location is slightly stronger for T < To than it is for

T > To. These effects distort both the transmission curve and the

resolution. While these effects are definitely of interest, for purposes

of this study, they will be ignored in the rest of this paper.

E. Radial Image Location

From Figure 4, it can be seen that the y" coordinate of an ion

*' after it exits the electrodes is given by

y.(xy ) = y"(O) + x tan (ar) (4-17)
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or for small angles

y y"(0) + x r (4-18)
I1"

At x = 0, we can equate y"(0) with aep(Oe). We can thus combine

the above equation (4-18) with the equation for p (3-44) evaluated at

Oe, the equation for a:" (4-7), and the equation for cc (4-3), to
!.:r r

get

y (x) n[~ cos(Xe) + Zf+ -sin ej

" f-Po sin(XOe) + e cos(X~e)

+P1 ae( + )cos(X~e) + ae - xu"X sin(Xe) (4-19)

It is desirable that all of the ions of a given energy, that

originate from one given point A', be focused at the same point Ar

after they exit the electrodes. This is possible if and only if the

coefficient of p, in equation (4-19) vanishes. By setting the

coefficient of p1 to zero, we can solve it for x", thus determining

the location 4r of the radial image plane in terms of the other system

parameters. This gives us

.- [a2e a cot(X4e)J• - +
-7-

V . -~ cot(Xoe)] (4-20)

F. Axial Image Location

Similar to the radial case, the ZV coordinate of an ion after it

exits the electrodes is given by

"--X = Z"(O) X" tan("z ) (4-21)
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or for small angles

VIX)- Z"(O) + X" $1 (4-22)

At X" 0, we can equate Z"(0) with aet(#e) We can thus combine

the above equation (4-22) with the equation for C (3-51) evaluated
,,

at * = *e, the equation for at (4-8), and the equation for z (4-4),

to get

- - e sin(4Oe ) + ae,

I1. (Eaf 2

+Ci[ae(l + F-*)cos(C4e) + O l- x"E)sin(e4e) (4-23)

As in the radial case, we desire that all of the ions of a given

energy, that originate from one given point A', be focused at the same

point A" after they exit the electrodes. This is possible if and only

Sif the coefficient of , in equation (4-23) vanishes. By setting the

coefficient of C, to zero, we can solve it for x", thus determining the

location Z" of the axial image plane in terms of the other system

parameters. This gives us

X"- -j7 ot(e

V" '2 - ae ct(4Oe)] (4-24)

Note the extreme similarity of form of the axial equation (4-24) with

the radial equation (4-20). This will occur often as we proceed with

the Optics chapter.
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G. Radial and Axial Focal Points

It is of interest to know where a parallel beam of ions into the

system will be focused. This is easily obtained by taking the limit

%" of 9r and to' as ' goes to infinity. From equations (4-20) and (4-24),

1. .~we have

gr L im ir X cot(X) (4-25)

gz Lim = a cot( (4-26)

The locations of the radial and the axial focal points are gr and g

respectively.

It is also of interest to know what Z' would have to be in order to

provide for a parallel beam of ions out of the system. In this case
II

r£ and Xz separately would be equal to infinity. Solving equations

I #

(4-20) and (4-24) for 2' (now called tr and 2Z respectively), we get

* ae 2  a o
r a + r t(Xe)

Xr cot(Xo e) (4-27)

- a 2 a " tz = a+ z. COt(E

E" - a e cOt(CEe) (4-28)

Taking the limits as Zr and Zz go to infinity gives us

-F im Z' - - e c ot( e ) 
(4-29 )

r: -p' ,

g; im k= cOt(e) (4-30)
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*As expected, for reasons of symmetry, we have g~ = gr and

9- gz 9z.~ Thus the focal points (measured from the ends of the

electrodes) are located at

g *cot(X(Pe (4-31)

g 2ae c~( d(4-32)

H. Newtonian Lens Equations

Substituting gr (4-31) and gz (4-32) into the equations for

Zr (4-20) and Zz (4-24) gives us

t ae2  43

ri =- +~ 9i g)=51 ~ gr 2  (4-335)

22

gzz

Teuaions eqaredeined ton bere ragd s

(Z 9d (t) - g9d a 2 (4-35)

(ii' 2 2438
(Z -d Wz ( 9d + =(-6
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with

2a 2
fr 2 =aX + 2 - s ( (4-39)

r -~ gr -rin'±---T
ae (4-40)

fz - + gz2,
C2 2sin2 (C4e)

It must be noted that while fr and fz are called the radial and

axial focal lengths, they are merely definitions of convenience that

permit us to write the lens equations, which are themselves only a

convenient form. It is gr and gz that are actually important.

I. Post-Electrode Ion Location

The location of an ion is given by y"(x") (4-19) and z"(x") (4-23).

It will be convenient later if these two equations are transformed

now to simpler forms.

is By setting x" i t r, the p, coefficient vanishes in equation (4-19),

giving us

y,,(.r,) r ae -cos(X~e ) + 1 + X.r sin(Xe)X ae

"PO sin(Xe) + cos(Xde) (4-41)

The radial, Newtonian lens equation (4-37) can be rewritten as

.. ,, f 22 r (4-42)

r -+ g

By combining the equation for y"(ir) (4-41) with the equations for

Zr (4-42), gr (4-31), and fr (4-39), we can obtain a new expression for

K ,i y,,er [r(
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This equation expresses the radial location of an ion in the radial

image plane as a function of the ion's relative energy, n, and its

radial starting position, Po.

By setting x" z, the coefficient vanishes in equation (4-23),

giving us

.,aaeo[a sin (ce) + Z cos(c4)(z"U, -aCT9 (4-44)

The axial, Newtonian lens equation (4-38) can be rewritten as

pit fz 2

= + g z (4-45)

By combining the equation for Z"(i ) (4-44) with the equations for

Rz (4-45), gz (4-32), and f (4-40), we can obtain a new expression

for z"()

- (4-46)

This equation expresses the axial location of an ion in the axial

image plane as a function of the ion's axial starting position, Co.

Note that it is independent of the ion's relative energy, n.

J. Radial and Axial Magnification

Let the entrance sit have a radial width of wr 2aePo,

symmetrically located about p = 0, i.e., the edges of the slit are

located at p - ±po. The width of the image of the entrance slit in the

radial image plane is

Wr = Y"(Po) - Y"(-Po) (4-47)
L"
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By equation (4-43), we have

ae  + - - PO

+- f r + f0 rl

-ae [ I (£' PO g (4-48)Tr' -r grj

or

': : r = -2 a e P O° ' -r , g r( 4 -4 9 )

If we define the radial magnification to be Gr we then have

Cr =(2.Ze~ (4-50),i': £ ' gr

Similarly, let the entrance slit have an axial height of

z = 2ae C, symmetrically located about C = 0, i.e., the edges of the

slit are located at V = ±0. The height of the image of the entrance

slit in the axial image plane is

.",

wz "(Co) - - o) (4-51)

By equation (4-46), we have

'.z = ~ fz / fz (4-52)

z -aeC° + ae--z' gz)

or w. -2ae ( g -w; f (4-53)

If we define the axial magnification to be Gz - WZ, we then have

: -Gz ,(, _gf (4-54)

It is now possible to write the post-electrode ion location

equations (4-43) and (4-46) in their most compact form. Substituting
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the equations (4-50) and (4-54) for Gr and Gz, respectively, into

equations (4-43) and (4-46) yields

:!"-.. Y+, o GO ae  (4-55)
y"(fl,po) =ae1I4 1 Xr -P~

Z"( 0 ) = -aeCoGz (4-56)

It must be noted that, in this section, Po and Co are performing

. double duty. In the derivation of Gr and Gz, po and 0 were specific,

fixed values. Tn the two equations above, they are again arbitrary,

as per their usual usage.

K. Energy Dispersion

The energy is a measure of how far the image of a beam of ions is

displaced because the ion energy is not the energy to which the system

is currently tuned. This displacement is called D.

The radial energy dispersion, Dr, and the radial energy dispersion

coefficient, Kr, are given by (Ref 4:179), (Ref 5:215), (Ref 6:27)

Dr Krn (4-57)

where Kr EYa (4-58)an

With the aid of the equation for y" (4-55), we have

Kr =a (I + Gr) (4-59)
aXT

Similarly, the axial energy dispersion, Dz, and the axial

dispersion coefficient, Kz, are given Ly

Dz EKzn (4-60)
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where KE rz  -(4-61)

However, with the help of the equation for z" (4-56), we have

Kz = 0 (4-62)

Therefore, Dz = 0 (4-63)

There is no axial energy dispersion, at least not to first order.

This is understandable as the major velocity components lie in the

radial plane and the axial velocity component is small. One could try

to rework the axial equations as a second order approximation, but the

axial equation of motion is of a form for which no general method of

solution exists. Therefore, it will not be pursued here.

It should be noted that n contains To in the denominator and thus,

Dr varies inversely with the mean energy, To.

L. Resolution

The absolute resolution is the reciprocal of the minimum difference

in absolute energy that can be resolved as two separate lines by the

system (Ref 4:179). The relative resolution is the reciprocal of the

minimum difference in the relative energy that can be resolved as two

separate lines when the system is tuned for the absolute energy, T0 .

The beam image moves inward or outward linearly with n, as ri is

decreased or increased. This is expressed by the radial dispersion

equation

Dr Krn = ae (I + Gr) (4-57)
4(4-59)
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By inspection of the y" equation (4-55)

y"'po) ae (- ( + Gr) - POrI (4-55)

it can be seen that, for a positive change br in po, the image moves

inward by br, where ,,I
br = Gbrr (4-64)

If the entrance and exit slits are symmetrically located about

P = 0, (y' y" = 0), and have widths w' and w" related by

wi = Grw' (4-65)

then a beam of ions of energy nj 0, with p0 = 0 and -r = 0, will have

its image located at y" = 0 (see Figure 10). If the relative energy

is increased, the beam image will move iutward until it just touches

the edge of the exit slit located at y" "- CrW' . By increasing

PO to ae, the beam image will move back toward the center of the exit

slit. The relative energy can then be increased again until it

reaches a value defined as n in which the beam just touches the outer

edge of the entrance slit and the beam image just touches the outer

edge of the exit slit. The relative energy n is the maximum relative

energy a parallel beam of ions into the system can have and still be

transmitted through the system.

Similarly, one can decrease the relative energy until the beam

image just touches the inner edge of the exit slit located at
'.•. y,,= -w' Grw ' -" 2 By decreasing p0 to 2- ,the beam image will move

back toward the center of the exit slit. The relative energy can then

be decreased further until it reaches a value defined as f in which
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the beam just touches the inner edge of the entrance slit and its

image just touches the inner edge of the exit slit. The relative

energy n is the minimum relative energy a parallel beam of ions into

the system can have and still be transmitted through the system.
B g" rwI' w +

B s-tig = -2-- and T = n , and inserting
By sttin yin 2 2 2ae

these values into the equation for y" (4-55), we get

Grw' =a B (1 + Gr) - a GI (4-66)
2 7 2  2ae

+

Solving this equation for n+ yields

r) + X2Grw' (4-67)

ae(Gr + )

-w" -Grw' -w-By settPi = - and n = n , and inserting
Bysetngy"=2 2 2ae

these values into the equation for y" (4-55), we get

-Grw' I -  
'

2 = ae (I + Gr) + w' Gr  (4-68)

Solving this equation for r- yields

[..~_X q--a G r w l ) (4-69)

The relative resolution is thus

'" + - 2X2Grw'
R = - = (4-70)
R ae(G r + i)

or R a 1 + (4-71)

By equation (3-42)

;ll T - To
- T - To (3-42)
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Therefore

T Tot + + To (4-72)

T Ton + To (4-73)

The absolute resolution is thus

" I--T" I( To
R T- T(n +  R-) (4-74)Rabs  Rre1

There fore

Raa 13~Tj*( + .~)(4-75)

and Rabs T (4-76)

That the absolute resolution varies inversely with To is

understandable in that, as the energy of the ion beam goes up, it is

increasingly difficult to separate the T ions from the T ions by the

width of the exit slit. This result agrees favorably with Paolini's

results (Ref 7:584) once one realizes that Paolini has written the

reciprocal of the resolution.

A comparison can be made now between the resolutions of the three

curved systems: cylindrical, spherical, and toroidal. For reasons

that will be explained in the Applications chapter, Gr will be set

equal to one. By taking the appropriate values of Re, we get

Cylindrical: Rrea-c (4-77)
rl 2w

Spherical: R 4 (4-78)
el w

Toroidal: R (479)rel 12w
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The spherical case has twice the resolution of the cylindrical

2 > 1case. It will be shown in the Applications chapter that, X2 - 4

Therefore, the toroidal case has as much as four times the resolution

of the spherical case. This is clear motivation for picking the

toroidal system over the other systems.

M. Transmission

The transmission, T(q),is the fraction of a beam, at a specific

energy n, that passes through the exit slit divided by the fraction

that passed through the entrance slit. We can ignore ion losses inside

the electrodes as we have already assumed that all of the ions remain

near the central path. The transmission is thus the fraction overlap

of the beam image with the exit slit.

To get the transmission we need to know the location of the edges

. of the beam image. The edges can be located with the aid of the

equation for y" (4-55), keeping in mind that there is an image

inversion, that the entrance slit edges are located at Po + 2ae

and w" = Grw'. The inner edge of the image, YL' is given by

YL ae (1 + Gr) G2ae G (4-80)

The outer edge of the image, yU, is given by

yU ae ' (1 + Gr) + -LL GrI (4-81)

When n > 0, y" is outside the area of the exit slit. Thus, the

transmission is

:'.: -2- - Y

T(n) 2 - " n > 0 (4-82)
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'or T(nI) I - -- r 1 T-' ) > 0 (4-83)
'r w -

When n > 0, YL is outside the area of the exit slit. Thus, the

transmission is

YU;- -~
T(n) = w" n > 0 (4-84)

or T(w) = 1 + ae + r n > 0 (4-85)

These two forms can be combined into a single equation that is

good for all n, as shown below

T(n) ffi I - I + -Inl (4-86)

Recalling the equation for the relative resolution n (4-71), we can
write the transmission in its final form as

T(I) = - re1  Inl (4-87)

A comparison is readily made between the transmissions of the three

curved systems. As developed here, all three have transmission

curves that have the shape of an isosceles triangle with a peak value

of 100%. The difference between the curves is how sharp they are, and

that is strictly a function of the resolution. Thus, the toroidal

system has the sharpest transmission curve.
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N. Summary of Key Optics Equations

For the convenience of the reader, the key optics equations are

listed here for future reference.

Radial Entrance Angle, -r

=r p.,, (Po - P0) (4-3)

Axial Entrance Angle, z

f zr ( - (4-4)

Radial Exit Angle, ar,,)
r= -X - sin(XOe)-- r cos(Xe) (4-7)

Axial Exit Angle, "

c, -c C sin() - ' cos(Oe) (4-8)

Location of Radial Focal Point, gr

gr =X. cot(X"e) (4-31)

Location of Axial Focal Point, gz

z ( (4-32)
* g~ = -co t(C4~e)

Radial Newtonian Lens Equation

'. ( r gr) (9' 8d fr2 (4-7

Axial Newtonian Lens Equation

( - gz) (' - gz) = fZ2  (4-38)

0z

4-.1
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Radial "Focal Length", fr

2 a 2  2 a 2

fr -x + gr2 - sin-(Xe )  (4-39)

Axial "Focal Length", fz

f2 ae 2 = ae2 (4-40)fz* g C2sin2(C0e)

Radial Magnification, Gr

[i fr
Gr - gr (4-50)

Axial Magnification, Gz

fz (4-54)Gz '-z

Radial, Post-Electrode Ion Location (x" =

y"(l,Po) = ae 4 [1 + Gr] - PoGri (4-55)

Axial, Post-Electrode Ion Location (x" = z

z"(0) = -ae~oGz (4-56)

Radial Energy Dispersion, Dr

Dr =Krl (4-57)

Radial Energy Dispersion Coefficient, Kr

Kr = a (i + Gr) (4-59)
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Radial Image Displacement, b "(when entrance slit moved by b '
r r

b r -b 'G (4-64)

Radial, Relative Energy Resolution, R
re 1

R ~ 1 + (4-71)

Radial, Absolute Energy Resolution, R abs

R -(4-76)
abs To

Transmission, T(n)

T(n) 1 - 2 R 1 m (4-87)
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V. Applications

A. Overview

The results from the previous chapters are used in this chapter to

- work out the behavior of off-center slits. It is the use of off-center

slits that gives this analyzer its chief advantage - that of being able

* - to sample different parts of the energy spectra at the same time with

a single voltage on the electrodes.

Criteria are developed for minimizing ttV size of the instrument.

This leads to a simplified set of optic equations and lays the

foundation for discussing the various trade-offs that must be made in

* designing an electrostatic analyzer.

Errors in the series solutions are then considered as functions of

the deviation from the central path. A discussion is given on how

these errors affect the resolution and the transmission. This leads to

choosing secondary entrance slits so as to restrict the entry angles

so that the ions will remain in regions with no more than a given

4error in the series solutions to the electric fields.

Finally, a qualitative discussion is given on how to determine the

total beam current from what is known about the original ion population.

IThis information is needed in order to make a choice of the entrance

slit size when trading-off between the resolution and the detector

sensitivity. It is also needed for analyzing the data provided by the

6 instrument.
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B. Off-Center Slits

One of the attractions of a toroidal, electrostatic analyzer is

that the radii, Ra and Rb, can be allowed to sweep through a full 2r

(see Figure 2). This eliminates one pair of edges and their fringe

fields. Also, ions can be admitted at any point on the circle, R = Re,

and all of the previous results still hold, although a new coordinate

system is needed for each new entry point.

These new coordinate systems differ only in that they have been

rotated about the center of curvature for R (see Figure Il). Thise

rotation yields a new entry point and a new coordinate system, but the

equations used for the new coordinate system are identical in form to

the original equations used for the original entry point and the

original coordinate system.

The advantage of the additional entry points is that their entrance

and exit slits can be placed at various off-center locations. This

permits the user to sample different mean energies simultaneously.

As the voltage on the electrodes is changed, the multiple channels

sweep different segments of the energy spectra at the same time.

This results in a complete spectra in far less time, which can be

critical in experiments with a limited total observation time. A

specific example that comes to mind is a pulsed plasma device.

The equation which describes the behavior of off-center slits is

y a e{X 2 (l + G) - poG (4-55)

This can be rewritten as

r X2( j + G (5-1)
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By letting pa be the center of an off-center entrance slit and y" be

the center of the off-center exit slit, equation (5-1) determines the

mean, relative energy that is being sampled by that pair of slits.

* The voltage that is being applied to the electrodes is hidden

inside of n. The relative energy, n, is given by

T - To (3-42)
- To

where To = 1 Mov 2

From the centripetal force equation (3-9), we hdve

2 =-eEaae (3-9)
2 2

From the electrostatics section, we have

"= 2 Eo (2-24)b'b' '"'~'i'..., { ( _ i n [(I  + 2pb )' ( b( 2 +  Pby 2- 4

where P= d (2-25)
b 2a

e

where d is the electrode separation. Therefore, we have

To -eU0

"C2 -1 ) nC2 (n I +

l e e (5-2)

ee

Equation (5-2) gives the mean, absolute energy, To, for which the

4 - on-center slits of the analyzer are tuned, in terms of the electrode

geometry, the unit charge, and the applied voltage, Ua. It must be
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remembered that Eo is intrinsically negative; therefore, equation (5-2)

yields a positive value for To.

By combining the equations for T (5-1), To (5-2), and n (3--42),we
arrive at

T = (n + l)To

jX2(l + G) r a Or] i

-eUp
_____2d d

* 2a !a)

(5-3)
2aee

* This expression gives the mean, absolute energy, T, for an off-center

pair of slits, in terms of the location of the entrance and exit slits,

the unit charge, the electrode geometry, and the voltage applied to

the electrodes.

The range of energies that can be covered,for a fixed voltage, is

determined by the available range of values for y" and po. To avoid

ambiguity, for each radial, R, there should be only one entrance slit.

The number of exit slits is limited only by the size of the detector

behind each slit. The pattern of exit slits can be repeated over and

over again, each group with a different entrance slit and thus

sampling a different segment of the energy spectrum. The number of

groups is limited only by the size of the detectors.

The absolute energy T (5-3) has been plotted as T/eUo versus £2

in the Appendix (see Figures 13, 14, 15), where e is defined to be the
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unit charge. In these three figures, I have set the radial

magnification to Gr - 1; the electrode gap to d = ae/50; and the

maximum displacement of the entrance/exit slits to i P0 = ±.01.ae

In Figure 13, the upper energy limit, Tu/eUo, of the off-center slits

is plotted, so we have = Po = +.0l. In Figure 14, the lower energy
ae

limit, TX/eUo, of the off-center slits is plotted, so we have

= O = -.01. In Figure 15, the difference between Figures 13 andae

14 has been plotted as AT/eUo. This difference is the maximum range

of energies (divided by eUo) that the system can sample simultaneously

at a fixed voltage. For a given value of E 2
. the energy, To/eUo,

being sampled by the on-center slits is the average of the corre-

sponding values from Figures 13 and 14.

To use these figures: first, choose a value for E2 and then read

TZ. A T
U eUo off the given curves; second, multiply by a

particular value Uo for the electrode voltage. This will give you

T , T and AT in terms of ev. To, in ev, is the average of Tu and TZ.

To illustrate this let us pick c2  1.94. We then have (in ev),

T 58U 0 , T9 = 42U0 , and AT = 16Uo. For Uo = 160 volts, we then get

T = 9.28 key, To = 8.0 key, T, 6.72 kev. AT is 2.56 key, or about

32% of To.

By comparison, for a cylindrical system, we have 02  0. Therefore,

in ev, Tu 50.2Uo, T f 49.7Uo, and AT = .5UO. AT is about 1% of To.
u2

For a spherical system, c2 - I. Therefore, in ev, we have T ff= 50.5U0 ,i1  u

T f 49.5U0 , and AT - U0 . AT is about 2% of To . For a toroidal system,

the optimum value of c2 is 1.94 (this is discussed later in this chapter).

This gives us, in ev, Tu = 58U 0 , Tk = 42Uo, and AT f 16U 0 . AT is
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about 32% of To. The toroidal system clearly has the advantage over

the other two systems.

The energy range sampled, AT, grows as 1E21 + 2. By good fortune,

the resolution also is maximized by 1E21 2 (to be shown later). It

is the improvement in the energy range and resolution that makes the

toroidal system more attractive than the spherical system.

A discrete sampling of the energy spectra can be obtained by

driving the applied voltage with a staircase waveform. If the steps

have a slight ramp shape, then a continuous spectra can be obtained

while the jumps prevent unnecessary overlap.

Due to the linearity of the equations involved, the resolution of

an off-center pair of slits is the same as it is for the on-center

slits, and is given by

R Rrel a I ( + (4-71)

The transmission curve is unchanged in shape, but it is shifted

in the relative energy. If Ti' is the relative energy for which the

off-center pair of slits is tuned, as per equation (5-1), then the

transmission is given by

T(n) - 1 - 2R (fnl - n') (5-4)

C. Instrument Size-Maximum Compactness

If one neglects the size of the instrument for a moment and tries

instead to maximize the resolution, one quickly discovers that no

physically realizable maximum exists with respect to the parameters

ae and R e . A maximum does exist for the parameter e in a form which

requires X = 0; therefore, X e - 0, which forces the slits outwards to
e
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infinity. If ' the object distance, is set to V = K*gr, a multiple

of the distance to the focal point, the problem remains for the

parameters ae and R e, while the maximum with respect to e now

requires X0e f nfl, n f 0,2,4 .... Unfortunately, this choice of XPe
ee

. requires that the entrance and exit slits be located at infinity.

The above discussion immediately brings home the need to hold down

on the size of the instrument, especially the separation of the two

slits. The Newtonian lens equation gives us

( - gg) ( g f 2 (4-37)r igr r r

It can be shown with elementary calculus that if the product

AB = constant, then the sum, A + B, is a minimum if A = B. This gives

us the requirement

rr9. (5-5)£r

Therefore, equation (4-37) becomes

(i-g )2 f (5-6)r ,r

It is obvious that ' is a minimum if

gr =0 (5-7)

At first thought, it would seem that having the focal point

located at zero is unreasonable, but it must be remembered that this

is not a thin system. It is entirely possible to have the focus

located at zero. Having the focal point located at zero means that it

is located in the plane that contains the exit end of the electrodes.
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By equation (4-31), we have

2e cot(Xe) (4-31)gr Xe

-r 0, implies that

X # (5-8)
e 2r

We could set. X equal to higher, odd multiples of but we must

have 4e less than 27r and this would require that X increase.

Unfortunately, increasing X decreases the resolution. Thus, the best

resolution is maintained by discarding the higher, odd multiples of

1 4-Therefore, the best compactness can be accomplished by requiring that

." = 2' and X0e
r e 2

D. Simplified Optic Equations

* The requirements imposed by equations (5-5) and (5-8) (from the

previous section) give us the following simplified optic equations:

(X2  12 - C2 1) (5-9): e 2X

(e2 2e

-r 0 (5-10)

gz 2e cot ME

2. ' ig" = f =x a  (5-12)£r r X

=+ +g (5-13)
z- , ae

f _ ae (5-14)z csin(TC
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G = 1 (5-15)

Gz t ae f z (5-16)

za

rel x- (5-17)

T(~) =1 2aT(n) - =X- ( I - n') (5-18)

(for on-center slits n' - 0)

The last two equations can be further simplified if we set
w' =Kae. Typically, K has values on the order of 102 This gives us

Re (5-19)

2 ,

T(n) - 1 -K (n[ - ) (5-20)

These simplified equations are graphically represented in the

Appendix. In several cases, the equation has been divided by a before

e

plotting so as to get a curve of greater utility. The curves have been

plotted with the restriction that 4e < 2ff and most of them have a

common 02 horizontal axis. These curves should make it easier for the

reader to select parameters for his own instrument.

E. Trade-offs and Constraints

The selectable parameters are ae, R' el , K (the slit width), and

d (the electrode gap). These parameters determine 2'o, kr " (the slit

locations), Rre I (the resolution), and strongly affect the voltage

supply requirements, the ion beam current, and thus, the detector

* sensitivity requirements. Any constraints which are imposed on these

additional parameters strongly impact on the allowable values of the
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*!i selectable parameters ae, Re, 4e' K, and d. Some guidelines can be
e ee

worked out in advance without knowledge of any specific application.

The resolution goes to infinity as X2 approaches zero, or as

approaches two. We are restricted, however, to values of c2 such that

force - 712 - (5-21)

1
Values of X < ., force > 2n, which is physically impossible.

Also, as X approaches zero, the slits move out toward infinity and we

again have a size problem.

An examination of the curve for Zz /ae (see Figure 20), shows thez e°

existence of several poles. Advantage can be taken of the poles by

picking a value of c2 close to the pole such that Z- = " ". This
z r

would make the radial and axial image planes coplanar. Perhaps the

best reason for doing this is to hold down axial extent of the ion

beam in the radial image plane. This is not essential but would help

to avoid unwanted losses at the axial ends of the exit slit, which

must be located in the radial image plane. It also helps to keep the

beam intensity up and to hold down on the axial size of the detector,

permitting more groups of detectors to be used.

1numerical search of the region between c2ff 2 - and the

first pole to the left yields

' 2  1.897 (5-22)

z 9 =.el - 3.116 (5-23)
ae ae ae

K*R = 9.708 (5-24)U re 1
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16
"2-"-A numerical search of the region between c2 = 2 - and the

first pole to the right yields

C = 2.115 (5-25)

- _ = __ f 2.951 (5-26)
ae ae ae

SK*rel 8.708 (5-27)

The first value for E2 [equation (5-22)] has a higher resolution

than the second value for c2 (equation (5-25)]. This is at the

expense of having the slits farther away, which requires a larger

instrument. It should be remembered that these values only pin down
2 and not the actual values of ae and Re

E Re a •

It is the size constraints that heavily influence the choice of

ae and Re. This breaks down into two major considerations: first,

how much room is available for the electrodes; second, where do the

slits have to be with respect to the electrodes. If one accepts the

constraint imposed earlier that k " " 9 " and if the size of the
z r

electrodes is the primary concern, then one would pick Re, and

calculate ae from E
2 in equations (5-22) or (5-25). If the location

of the slits is the primary concern, then one would use equations

(5-23) or (5-26) to determine ae, and then Re would be calculated from

equations (5-22) or (5-25).

A complication in choosing ae and Re is that the outer electrode

dd
has an actual size of rb a + and R w

b e 2 e=R+~ wee h

electrode gap. The choice of d directly affects the voltage thatI
. must be applied to the electrodes to get a given value of E0 , the
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central path electric field strength, via equation (2-24). This

I impacts on the voltage supply requirements.

A further complication is that with a and R chosen (and thus c2),
one must now pick K to get the resolution desired via equation (5-19).

As K gets smaller, the ion current goes down and this impacts on the

detector sensitivity required. The detector sensitivity is further

affected by the atrength of the ion source that will be presented to

the analyzer entrance slit.

The choices are not easy and will probably require many trials

before an acceptable compromise is reached. Hopefully, the curves in

the Appendix will speed up the initial selection process.

F. Ion Path vs Field Error

It was initially assumed that all ions would have trajectories

near the central path and that the electric field could be given by

equations (2-34) and (2-35). However, as the ions radially deviate

from the central path, the error grows in the series approximation to

the radial field. By comparing the series solution to the exact

solution assumed by H. Wollnik (Ref 4:166) [equation (2-20)], it is

possible to estimate the percent error in the series solution as a

function of p, the deviation from the central path. The percent error

is defined as

% radial error E r (Pf-E ik *100 (5-28)

with - 0.

- -- This equation has been plotted in the Appendix (see Figure 26).

* .It should be noted that the curve shows that the percent error grows
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more rapidly for positive p than it does for negative p. In both

cases, the series solution underestimates the strength of the radial

field.

Starting from an on-center slit, the underestimation of the radial

field is going to result in the ion pattern being shifted toward

lower values of P. The pattern is fixed at p = 0 because the percent

error is zero for p = 0. Lower energy ions that traverse the p < 0

region will be transmitted in lower numbers than expected. Contrawise,

the higher energy ions which traverse the p > 0 region will be

transmitted in higher numbers than expected. In fact, due to the

greater error when p > 0, more high energy ions will be picked up than

low energy ions are lost. This will shift and distort the trans-

* mission curve. Also, the resolution will be slightly less sharp than

*expected because of the field errors.p.

The axial field series solution usually overestimates the true

field rtrength, but the percent error is symmetric about 0 = , and

has no effect on the resolution.

If one considers Figure 12, one can see that the percent error in

the axial field is given by

E (4) - sinOE (p*)z Wollnik
Z axial error = sin*E Wo" nk*100 (5-29)

Wollnik

where P* - 1 + c2p)2 + ((2 )2  ) (5-30)

The overestimation of the axial means that fewer ions will be

focused back onto the slit. As this effect is weaker for p > 0, the

high energy ions will have their transmission reduced less than the
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lower energy ions. This increases the distortion in the transmission

curve caused by the radial field errors. However, it does nothing to

the resolution.

A rough estimate of the axial field errors can also be gained by

the use of equation (2-8). This equation gives the equipotential

curves in the half plane ( = constant) as curves of p = f(C). This

has been plotted with C2 set equal to two (see Figure 27). Included

in the graph is an equipotential curve through p = 0 and r = 0, as

envisioned by H. Wollnik (Ref 4:166). Note that the error is

* .symmetric about = 0.

As the off-center slits are more likely to direct their ions

through regions away from the central path, their resolution and

transmission curves are more likely to suffer distortion and

" * degradation due to the field errors than are the on-center slits.

G. Entrance Angles versus Field Errors

If one picks a maximum percent error that will be tolerated in the

radial electric field, then, with the help of Figure 18 in the

Appendix, a value for the maximum permissible p can be chosen. The

question remains: what is the maximum permissible radial entrance

angle, r' such that p p max for all €? To get an answer, we need

the solution to the radial equation of motion:

P() = Pi - cos(X ) - r sin(X4) + X2 (3-44)

By equation (4-3), we have

aer r (P 0 - I) (4 -3 )
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or

P P -PO 2 (5-31)
ae

Therefore,

P 0- ae X XT

(5-32)

The geometry of the instrument will pin down V2, ae, and X. Po

can be set equal to the radial center of the entrance slit of interest,

and q can be calculated from equation (5-1) for the pair of slits

being considered. Rho is constrained by p S pmax , as selected from

Figure 18 in the Appendix. A computer search can now be made, with

as the independent variable, to find the value of a that yields
r

P S Pmax" Due to the asymmetry of Figure 18, there exists two values

for =r': one for ions that leave the entrance slit heading outwards
r

(p > 0), and one for ions heading inwards (p < 0).

By adding a secondary entrance slit behind the primary entrance

slit, ions with too large of a radial entrance angle can be eliminated.

The edges of the secondary slit are situated so as to be consistent

with the two values of r ' just computed. This will ensure that ther

ions are constrained to the region surrounding the central path with

a percent field error less than or equal to the maximum error that one

has chosen to tolerate.

A similar calculation can be done for the axial entry angle, .
z

The solution to the axial equation of motion is

• 6 = Cz cos(P) - L. sin(co) (3-51)
C
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where

'= 0e ( 10 - ) (4-4)

or

SC O Co - -(533)
ae

Therefore,

4() C (O -ZV cos(cp) - A..sin(c4)) (5-34)

The geometry of the instrument will pin down V2, ae, and c. O

can be set to the axial center of the entrance slit, CO = 0. Zeta is

constrained by 4 4 where C is obtained from equation (5-29)." cnstaind b L max' max

A computer search can now be made, with 4 as the independent variable,

to find the value of z ' that yields C < max' Due to the symmetry

involved, only one value of exists.
z

The entrance slit is relatively narrow in the radial direction,

and the radial entrance angle permitted by the primary and secondary

slits uoes not vary too much from r' (max) for ions that enter near

the radial edge of the slit. However, the entrance slit is relatively

long in the axial direction. To hold down on the deviation of the

maximum permissible, axial entry angle from ' (max), the axial

secondary slit edges need to be far away from the primary slit, i.e.,

as close to the electrodes as possible. This can be accomplished with

a single secondary slit located near the electrodes with both the

appropriate axial and radial edges.

The existence of the secondary slit accomplishes four things:

first, it limits ion trajectories to the central region; second, it
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prevents ions from straying from one group of exit slits to another

group causing an ambiguity in the data; third, it defines the soli

angle of acceptance of the primary entrance slit; and fourth, it

serves to hold down on the fringe fields. It might also be desirable

to place a matching secondary slit on the exit end of the electrodes.

H. Total Beam Current

The total beam current must be arrived at with statistical

mechanics. The procedure will be qualitatively outlined below. No

exact equations will be given since the problem is too dependent on

the particular experiment for any one set of equations to be of much

use. There are four statistical populations that must be worked out

in order to get the beam current.

The first population is the ionized plasma that is under

*-observation. This part of the problem is solely a function of the

experiment being conducted.

The second population is the plasma that comes through the primary

slit. This part of the problem is essentially that of a gas escaping

through a small hole in a container with an unlimited supply of gas in

the container. One must also take into account whether or not there

*• is a net motion of the plasma relative to the primary entrance slit.

If the plasma is dense or hot, as in a pulsed plasma device, then

plasma effects such as magnetohydrodynamics may have to be considered.

*In general, the second population will have a higher average energy

than the first population. It will also have an angular distribution

that is peaked in the forward direction.

* The third population is that portion of the second population

that clears the secondary slit. It can be determined by integrating
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the second population over the solid angle defined by the primary

- and secondary slits.

The fourth population is that portion of the third population

that clears the exit slit. It can be determined by multiplying the

third population's distribution function by the transmission function

and then integrating over energy. The result of the integration is

*the total beam current as seen by the detector.

If the primary slit width and length have been carried along as

unspecified parameters, then we will now have the beam current as a

function of the slit's width and length. It will now be possible to

* -make the trade-off between detector sensitivity and the resolution by

selecting the appropriate slit width and length.

The only problem with all of this is that, if the first

*" population's distribution function were known, then we would not need

the analy'" at all. If an approximate model is available, the above

procedure can be used to select the primary slit. In general, one

needs to start with the detector and work backwards so as to connect

the detector data to the original population. This can be made

simpler if one assumes that the original population obeys Maxwell-

Boltzmann statistics. It is still essential to know how the plasma

is moving with respect to the primary slit.

One fact that simplifies things is that the resolution and

transmission are in terms of the ion kinetic energy, T, outside the

field and the kinetic energy, TO, of an ion that obeys the centripetal

force equation. This gets one outside of the electrodes but inside

the secondary entrance slit. The secondary entrance slit only clips

7. the angular distribution and does not really affect the energy
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spectra. Thus, the detector data can be directly related to the

number of ions passing through the primary slit with a specific energy.

I. Conclusion

A toroidal geometry, electrostatic analyzer has several distinct

advantages: first, it can be used as a multi-channel analyzer

sampling different segments of the energy spectra at the same time;

second, the range of energies that can be sampled simultaneously is

more than an order of magnitude wider than it is with either a

cylindrical or a spherical system; and third, the resolution is

significantly higher than it is with either a cylindrical or a

spherical system. These advantages definitely enhance the speed and

accuracy of the electrostatic analyzer.

J. Recommendations

My recommendations are twofold. First, the fringe fields need to

be treated more accurately. Perhaps Albrecht's work (Ref:3)

will be of some help. Second, the image aberrations need further

studying. This will necessitate an investigation of higher order

terms in the electrostatic equations, the mechanic equations, and the

optic equations.
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Appendix

Representative Design Curves

Shown on the following pages are graphs which should help the

-reader to design his own instrument. Most of these curves have been

plotted with a common c2-axis, where c 2 is the ratio of the two radii,

ae of the mid-electrode surface. It should be noted that several of
-.. Re'

the curves have been divided by ae, to get curves that are of greater

utility.
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